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Abstract 

 

This survey explores the synergistic  integration of Wireless Sensor 

Networks (WSNs), Internet  of Things (IoT) , Artif icial  Intell igence (AI) ,  and 

Deep Learning (DL) in the realm of smart agriculture  (SA).  The agricultural 

sector is undergoing a transformative paradigm shift , leveraging advanced 

technologies to enhance efficiency, productivity, and sustainabil ity.  WSNs 

serve as the backbone, facil itating real -t ime data acquisit ion from various 

sensors deployed in the f ield. IoT seamlessly connects these sensor nodes, 

creating a dynamic and interconnected agricultural ecosystem.  

The survey delves into the application of AI and DL techniques to process 

the vast datasets generated by WSNs and IoT devices. Machine Learning 

(ML) algorithms enable predictive analytics for crop management,  disease 

detection, and optimal  resource util ization.  DL models, with their abil ity  to 

extract intricate patterns from data,  play a pivotal role in image 

recognition for crop monitoring and yield prediction.  

Furthermore, the survey outlines the key challenges and opportunities in 

deploying these technologies in SA, including energy efficiency, scalabil ity , 

and data security. It  discusses current  trends,  emerging technologies, and 

potential future developments in this interdisciplinary f ield.  

In conclusion, this  comprehensive survey provides a holistic  overview of 

the integration of WSNs, IoT,  AI ,  and DL in SA, highl ighting the 

transformative impact on farming practices.  The synthesis of these 

technologies holds the promise of ushering in a new era of precision 

agriculture, fostering sustainable practices and ensuring food security for 

a growing global  population.  

 

Copyright: © 2024 by the authors. This is an open-access article distributed under the 

terms of the Creative Commons Attribution-NonCommercial 4.0 International License. 

(https://creativecommons.org/licenses/by-nc/4.0/) 

1. Introduction 

In an agricultural domain, significant 

technological advancements have ushered in a 

new era, incorporating cutting-edge novelties 

like IoT, WSNs, Wireless Network Protocols, 

Unmanned Aerial Vehicles  (UAVs), AI, 

Agricultural Robotics, Big Data Analytics, ML 

and Blockchain systems. This amalgamation of 

technologies represents a transformative shift,  

redefining traditional farming practices  [1].  

The widespread adoption of IoT systems on a 

global scale signals a shift towards innovative 

methodologies that leverage data generated by 

devices to enhance overall agricultural 

productivity. IoT facilitates seamless 

connections between machines and humans, 

enabling extensive real -time information 

exchange across disparate networks. In this 
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context, the deployment of intelligent 

computational sensors captures real -time data, 

effortlessly transmitting valuable insights to 

individuals worldwide via the internet, 

irrespective of time or geographical constraints. 

This interconnected framework not only 

augments the efficiency of agricultural 

processes but also opens up new possibilit ies 

for informed decision-making and resource 

optimization in the farming ecosystem [2].  

The agricultural landscape is undergoing a 

profound transformation propelled by the 

integration of cutting-edge technologies, 

namely WSNs, IoT, AI , and DL. This 

amalgamation marks a paradigm shift in 

traditional farming practices, ushering in an era 

of precision agriculture where data -driven 

insights and intelligent decision -making 

converge to optimize productivity, resource 

utilization, and sustainability  [3].  

WSNs form the foundational infrastructure of 

this revolution, acting as the sensory nerve 

system of SA. These networks consist of 

spatially distributed sensors strategically 

deployed across fields to capture real -time data 

on environmental conditions, soil quality, and 

crop health. The seamless connectivity 

facilitated by the IoT interlinks these sensor 

nodes, creating a dynamic network that 

transcends the limitations of conventional 

farming approaches [4].  

AI, with its abil ity to process vast datasets and 

discern complex patterns, emerges as a key 

enabler in this transformative landscape. M L 

algorithms analyze the data generated by WSNs 

and IoT devices, providing actionable insights 

for crop management, disease detection, and 

precision irrigation. DL, a subset of AI, further 

enhances the capabil ities through sophisticated 

techniques like image recognition for crop 

monitoring and yield prediction [5].  

This comprehensive survey navigates through 

the intricate integration of these technologies 

in SA, offering a panoramic view of their 

collective impact. By examining current 

applications, challenges, and emerging trends, 

the survey sheds light on the potential of this 

interdisciplinary approach to revolutionize 

farming practices. In essence, the synthesis of 

WSNs, IoT, AI, and DL not only propels 

agriculture towards unprecedented efficiency 

but also contributes to global efforts for 

sustainable and resilient food production 

systems [6]. 

WSNs incorporated with IoT, AI , ML, and DL play 

a pivotal role in revolutionizing SA by supplying 

crucial information tailored to definite systems 

and applications. Here's the compressed outline 

of their key contributions [7]: 

Irrigation Systems: With the ability to closely 

monitor water usage, WSNs enable farmers to 

effectively manage water resources and avoid 

over-irrigation. The detection of regions with 

drainage problems or inadequate irrigation 

distribution is made possible by real -time soil  

moisture content monitoring. 

Soil  Moisture Monitoring Systems: Continuous 

measurement and transmission of soil moisture 

data at countless pits by WSNs empower 

farmers to optimize irrigation practices. This 

helps in addressing challenges related to under 

and over-watering.  

Fertilizer Optimization and Control: WSNs are 

useful instruments for tracking soil nutrient 

levels and providing current data on the 

nutritional state of the soil. WSNs help refine 

fertilizer applications by precisely 

recommending amounts and ideal timings 

based on thorough study of soil data . 

Early Stage Control of Pest and Crop Diseases: 

WSNs gather vital information about 

temperature, humidity, and other elements that 

affect the growth of pests and diseases. This 

information helps farmers prevent or minimize 

crop loss by enabling early diagnosis and 

intervention. 

Energy Saving and Power Consumption: WSNs 

make it easier to keep an eye on how much 

energy is used in irrigation systems and other 

agricultural operations. With the help of this 

capability, farmers may pinpoint places where 

they could save energy and optimize power use 

for more sustainable and productive farming 

methods.  

In essence, the integration of WSNs with IoT, AI, 

ML, and DL technologies enhances the 

precision, efficiency, and sustainability of 

agricultural practices. The real -time data and 

insights provided by these systems empower 

farmers to make informed decisions, leading to 

improved resource management and increased 

productivity in SA [8].  

The research contributes to the field in the 

following ways:  

I. The study extensively reviews existing 

literature related to SA, with a primary focus on 

IoT, WSNs, and wireless communication 

technologies. This entails a careful examination, 

grouping publications according to the year of 

publication starting in 2019 and focusing on 

network protocols and IoT-WSN application 

domains. The analysis sheds light on the IoT -

WSN architectures and related network 

protocols for SA systems. 
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II.  Wireless communication protocols for SA, 

such as ZigBee, Wi-Fi , SigFox, and LoRa WAN, 

are examined in detail . The emphasis is on 

understanding their features and useful 

applications [10].  

III. A comprehensive survey discusses five key 

applications within SA: irrigation systems, 

energy optimisation, insect and crop disease 

control, fertil izer optimisation, and soil  

moisture monitoring. The report also looks at 

how these applications have been integrated 

with wireless communication technologies since 

2019. 

IV. The paper explores the current problems 

and unresolved concerns in SA technology. IoT -

WSN scalability and reliability, data privacy and 

confidentiality, network security, intrusion 

detection, data integrity and authenticity, user 

privacy and consent, resilience to failures and 

attacks, location privacy, power consumption, 

cost and standardization are all included in 

these concerns. Possible remedies for these 

issues are also carefully considered. [11].  

V. Moreover, the study offers a wide range of 

future recommendations covering sophisticated 

architectures, such as blockchain technology, 

5G and 6G networks, agri -robotics, artificial 

intelligence (AI) and artificial general 

intelligence (AGI) systems, and renewable 

energy. Future farmers stand to gain from these 

developments if they open up new possibilit ies 

for economical, sustainable, and user -friendly 

agricultural systems [9].  

 

1.1 Paper Structure 

The structure of this paper unfolds as follows. 

In Section II , a comprehensive exploration of 

relevant study is undertaken through a 

thorough review and analysis of prior research. 

Moving to Section III ,  a detailed discussion 

about SA parameters and studies that have 

employed various technologies to scrutinize 

these metrics. Section IV is dedicated to an in -

depth discussion of the issues and challenges 

faced during course of a research, accompanied 

by suggestions for potential avenues to extend 

this project in the future. Section V shows 

Future Directions, ultimately Section VI 

encapsulates the report, drawing together the 

findings and insights gleaned throughout the 

paper, culminating in a coherent and conclusive 

summary. 

2. Literature Review 

The authors in [12] presented a multi-objective 

intelligent agriculture system. They prepared a 

hardware prototype to test the system. The overall 

system is developed in conjunction with automated 

processes and systems operating on IoT through a 

remotely operated portable gadget and an Internet-

connected computer. A robotic machine with different 

actuators and sensor systems (camera, object detector, 

sprayer, alarm, and cutter) is remotely controlled 

through GPS location data. These monitors are used to 

keep a watch on the crop and ensure that animals 

or birds do not harm it. Another strategy involves 

greenhouse management. Its purpose is to sense 

temperature, humidity, and motion and to operate the 

light, water pump, and heater. The final mechanism is 

an intelligent wireless humidity sensor node that 

transmits gathered data to the greenhouse control 

unit for the water reservoir to be actuated working on 

real-time data collected. The projects are based on the 

device types named as follows: Raspberry Pi, ZigBee 

modules, and the AVR AT Mega microcontroller. 

The authors of the study [13] presented a system that 

functioned on IoT for assessing the quality of water. The 

presented hardware model meets WHO standards for 

water quality parameters. The gathered data is 

transferred to a cloud server for storage in real-time and 

analysis. The primary factor of this study concerns 

the prediction, using a ML model to approximate 

metrics for water quality through the cloud system. 

Sughapriya et al. [15] planned a system for analyzing 

water quality using IoT and multiple sensor modules. 

This system monitors water quality by detecting pH, 

conductivity, temperature, and turbidity using 

different sensors. Information from the sensors is then 

retrieved by the Arduino controller. The acquired data is 

evaluated using IoT, and water pollution can be 

examined using a stringent mechanism. Furthermore, 

the proposed system provides messages and alerts to 

concerned municipalities and specialists regarding the 

quality of water. The presented model is comprised of 

many sensors that analyze water quality data in real-

time for quick deployment. Furthermore, the 

presented model is accurate, cost-effective, and requires 

fewer workforces. In another research by Krishnan et al. 

[14] different approaches involving DL methods are 

discussed and their importance in the field of water 

management techniques. 

Jerom B. et al. [15] suggested an Intelligent Water 

Quality Evaluating System that operated on IoT that 

integrates DL and Cloud techniques to examine the 

water quality of different water resources. Existing 

monitoring methods are capable of manually collecting 

water samples from various water resources, followed 

by monitoring and evaluation in a laboratory. This 

procedure is often ineffective because it is tough, 

requires a long time, and does not produce results in 

real time. Consistent evaluation of water quality is 

required to ensure the safe delivery of water to 

consumers from any water resources or supplies. Thus, 

manufacturing and implementing a cost-
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efficient method for real-time analysis of water quality 

parameters implementing IoT is now required. The 

prototype developed for this study detects a variety of 

intoxicants in the water. Different sensing devices are 

used to analyse several different factors to determine 

the water quality from water resources. The collected 

data is stored in the Cloud, and DL algorithms are 

applied to analyse if the water under test is safe to drink 

or not. 

Anuradha et al. [16] used IoT to develop an affordable 

system that monitored the quality of water in real-time. 

The strategy describes a Water Quality Testing approach 

based on sensors that analyse the chemical and physical 

metrics of water. Water properties are monitored 

using sensors and interpreted using a controller, in this 

case, Raspberry Pi. Lastly, the acquired measurement 

from the sensing device is visible on the internet using 

the Thing Speak API. The water monitoring system 

devised in this project has numerous returns, including 

good mobility, high frequency, and minimal power 

consumption. Quality factors such as hardness, 

conductivity, ammonia, iron, fluoride, and chloride 

content can also be tested for quality of water, and the 

values obtained are used to test the purity of the water 

for several different purposes like every day needs for 

industrial sectors and water consumption by humans 

for drinking. 

Demetillo et al. [17] offered a low-cost, real-time water 

quality assessment method for distant rivers, ponds, 

and other natural water resources. The main 

components of the system are a microcontroller, basic 

sensors operating on an electrochemical approach, a 

purposely built buoy, and a system of 

wireless communication technology. The designed 

structure can monitor pH, water temperature, 

and dissolved oxygen at pre-set periods. To best serve 

the authorized customers, the suggested system sends 

the gathered data in charts and graphs styles to a 

tailored web-based server and authorized mobile 

phones. To assess the performance of the system, the 

buoy's durability in unfavourable environmental 

conditions, the power usage of the overall system, 

efficiency in data transmission, and information display 

in a web-based software tool were carefully analyzed. 

The outcome of the research demonstrated that the 

designed method had better prediction and could be 

used for practical management of the environment by 

providing the users with important and timely statistics 

for improved action plans. 

In [18], a practical monitoring method for surface water 

quality is presented employing an 

affordable seawater sensor capable of sensing water 

conductivity, temperature, and turbidity. Another 

strategy based on IoT is described in [19], which uses 

drone machinery in combination with sensors operable 

in water to check quality. The measured values of the 

real-time metrics collected by the sensors are 

transmitted to the main drone over the RF transceivers, 

and the IoT device transfers them to the server for 

analysis of the water pollutant emissions. In a study [20], 

a system working on IoT for monitoring the quality of 

water is presented in which sensors are utilized to 

determine the pH and temperature levels of water 

to assess the parametric aspects of the water. 

In a paper presented by Wai et al. [21], a review was 

conducted to discuss the DL methods application in the 

field of water management. This paper helps the 

authorities in decision-making regarding a sustainable 

approach in the field of agriculture. According to [22], 

the proposed system is composed of water quality 

testing of pH, Turbidity, and Temperature sensors, an 

Arduino controller data processing unit, an information-

provided module, a monitoring centre, and other 

equipment. Throughout the day, turbidity, pH, water, 

and temperature are automatically sensed by an 

individual microcontroller. The data is collected by a 

single chip, which then functions and analyses it. If the 

water quality is not up to the standards, the data is 

transferred to the monitoring center, and the users 

are alerted instantly. This makes it easier for supervisors 

to take appropriate steps on time and to monitor real-

time water quality conditions remotely. Similarly, [23] 

proposes the system of an IoT-based water quality 

analysis that examines water quality on a real-time 

basis. This system includes sensors that detect water 

quality constraints like pH, dissolved oxygen, turbidity, 

conductivity, and temperature. The obtained data 

collected by the sensors are processed by the 

microcontroller to make them Zigbee module compliant. 

This computed data is remotely delivered to the call 

controller through the Zigbee network. Finally, by using 

cloud computing, sensor data can be accessed on an 

internet browser application. 

ML models are currently being employed all over the 

world to make devices smart by executing predictive 

analysis. A study [24], presents a drinking water 

predictive study in which the quality of water is assessed 

using pH, dissolved solids, and turbidity. To calculate the 

correlation between calculated parameters, a linear 

regression model is implemented for the measured 

model metrics. Similarly, in [25], a Fuzzy Neural Network 

is deployed to a three-year dataset to estimate water 

quality utilizing water quality metrics.  

In another approach, Tace et al. [26] present a technique 

based on ML for smart irrigation that can be 

implemented in different regions. They made sure the 

system was cost-effective and had good power 

consumption.  

In 2019, Mohammad Rezapour et al. evaluated 

evapotranspiration (ET) by analyzing and contrasting 

three different models: SVM, and adaptive neuro-

fuzzy inference system (ANFIS). The effective 

evapotranspiration for semi-arid areas was estimated by 

all three models [27]. ET simulations were executed on 

data spanning 1970 to 2010, with input values from five 

various combinations in southern Iran.  The SVM, an ML-
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based model outperformed the other two methods, 

with daylight hours, average air temperature, relative 

humidity, and air pressure as input data for the model. 

Rokade et.al [28], presented an innovative approach for 

the smart farming industry. This paper has outlined an 

efficient smart informatics system of farming with 

predictive information analytics on measuring 

characteristics in an intelligent farming system using a 

supervised ML method. 

Nikoo and Mahjouri [29], used a Probabilistic Support 

Vector Machines (PSVMs) model in combination with a 

GIS approach to manage the categorization and 

circulation of shallow and underground water in Iran. 

They claimed using these two methodologies would 

deliver reliable data for effective research into water-

conserving initiatives. In many case studies, Heddam 

[30] used artificial neural networks (ANN) to assess 

water quality components. He claimed that AI 

methodologies are capable of modeling and forecasting 

the integrated relationship between water quality 

parameters and exhibiting their periods. 

 

3. Few Parameters used in Smart Agriculture 

3.1 Temperature 

Temperature sensors, akin to pH sensors, are integral 

components in a variety of multi-parametric sensing 

devices. This prevalence arises from the pivotal role that 

temperature plays in determining water quality, given 

that numerous parameters are intricately linked to 

temperature variations (e.g., bioactivity, pH, 

conductivity, and dissolved oxygen). Moreover, the ease 

of monitoring temperature is underscored by its strong 

linear relationship with resistivity and electromotive 

force. This makes temperature a key factor in ensuring 

the accuracy and reliability of water quality 

assessments, as it significantly influences various critical 

parameters. The inclusion of temperature sensors in 

sensing devices thus becomes imperative, not only due 

to the interdependence of multiple water quality 

indicators on temperature but also owing to the 

practical advantages offered by its straightforward and 

linear monitoring capabilities. 

Water temperature can be determined by using range of 

technologies, consisting thermal expansion of medium, 

thermoelectric reactions, optical fiber, semiconductors, 

electrical resistance, and capacitance [31]. The 

application of thermoelectric tools and/or resistive 

sensors, on the other hand, is the most typical less 

costly temperature measurement technique. These 

techniques are popular due to their accuracy, affordable 

price for the required range of temperatures for water 

monitoring, stability, and ease of use [32]. 

The resistive technique is the most widely used method 

for determining temperature. The reason is that 

thermoelectric sensing equipment, particularly 

thermistors, generally uses resistive sensor nodes to 

estimate the average heat required for this process. This 

is in addition to the sensors' convenience of 

manufacture. Alam, Clyne, and Deen [33] deployed 

Wheatstone bridge sensors to provide high-precision 

temperature readings with minimum variability ranging 

between 0 and 50 C. There are four connecting 

terminals of which two are made of Silicon wafers of P-

type, which offers increased Coefficient Resistance of 

Temperature (TCR). This is the computation of 

comparative variation in resistance as each degree of 

temperature shift takes place. The remaining two 

terminals are made up of polystyrene. 

According to the authors, the sensor was also integrated 

into the Arduino framework using Android platforms 

integrating programs. A sensor connected to resistive 

devices, Wu et al. designed for analysis of heat utilizing 

platinum (Pt) film, which is a great conductor and offers 

features that support the measurement of heat factor. 

Finally, Simic et al. [34] proposed another approach for 

resistive temperature sensor measurement, this time 

employing a budget-friendly and commonly available 

sensor (LM35). They calibrated the gadget in the 

research laboratory and achieved a precision of 0.23 C. 

Lastly, Huang et al. [35] observed temperature using 

optical fiber. Despite its high price, this approach is 

typically adopted to monitor temperature when the 

optical fiber is also utilized to determine other factors. 

Two insulated optical fiber terminals were deployed 

since the characteristics the researchers were 

monitoring are highly sensitive to temperature changes. 

Thus, by varying the various central wavelengths, a 

linear relationship with temperature was discovered, 

enabling the device to be calibrated. 

3.2 pH 

Due to the vital role of pH in guaranteeing optimal water 

quality, it is regularly assessed and incorporated into 

nearly all multiparameter tools. Various techniques, 

including visual inspection, potentiometric, and 

photometric methods, are employed to determine the 

pH of a water sample. The visual method, utilizing 

specific materials like litmus paper and relying on color 

changes as a pH indicator, is characterized by lower 

accuracy levels and provides only approximate pH value 

estimations. 

Nernst equation is the basis of the potentiometric 

approach, which estimates the variation in hydrogen ion 

levels resulting from chemical experiments. 

Spectrophotometry is the fundamental core of the 

photometric approach that offers data on the varying 

pH samples as the shifts in wavelength absorption 

occur. 

PH sensors were designed in various ways by Deen, 

Alam, and Clyne [36], Wu et al. [37], and Simic et al. [38]. 

In a polyimide substrate, Alam et al. [39] employed a 

specific palladium (Pd) ink with silver-chloride diodes 

(AgCl) that worked as a baseline. Wu et al. measured pH 
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using ruthenium (Ru) redox; in comparison to Pd, Ru 

has less impurity risk, is simple to prepare, and has 

better chemical resistance. The researchers were able to 

assess pH with an accuracy of 1.02% between 4.01 and 

10.87. Finally, Simic et al. [39] designed a pH sensor by 

applying titanium dioxide (TiO2) as the core component 

linked to a digital communication electronic circuit 

(using an AD5933 adapter). 

Hossain et al. [40] deployed a multi-parametric device to 

examine water quality parameters in their work. For the 

analysis of the pH of water, a Photo-Induced Electron 

Transfer (PET) technique using 4-aminonapthlimide was 

used as a color agent. Dutta, Nath, and Sarma [41] 

attempted to implement photometric evaluation 

on transparent fluids, that is, without the need for color 

agents for testing. The sensor captures the visual 

spectrum and conducts the pH measurement by optical 

pre-processing and subsequent exchange into intensity 

and wavelength scattering. 

To calculate the pH of the samples, Silva et al. [42] 

utilized a colorimetric-based device that paired the 

camera of a smartphone with a microfluidic gadget 

based on paper. For the approach, 3d printing supports 

were designed to assure the device's durability, and the 

system was capable of determining pH in the 4.7-12 

range. 

 

3.3 Turbidity 

Water turbidity is a measure of the extent to which 

incident light is intercepted when passing through 

water, primarily caused by the presence of dissolved 

particles like inorganic and organic compounds that lead 

to a cloudy appearance. Consequently, turbidity serves 

as a fundamental indicator for evaluating water quality, 

helping ascertain its suitability for consumption and, in 

turn, acting as a preventive measure against waterborne 

infections. 

Considering the significance of turbidity, various 

turbidity sensors widely available in the market can be 

coupled with other water quality indicators to create 

IoT-based online systems for analysis, as implemented 

and addressed in extensive research. To optimize and 

reduce the costs related to monitoring turbidity, a 

recent study, such as that by Azman et al. [43], has 

devised a cost-effective technique that works on a 

turbidity sensor that is nephelometric for consistent 

measurement of the quality of water. The 

experimenters claim that the functionality of electrical 

sensing devices relies on the density of reflected light by 

light dispersing in fluids and solids employing an LDR 

(Light Dependent Resistor) as receiver, LED (Light 

Emitting Diode) as a transmitter, and RS232 device for 

linkage between sensing device and desktop. Arifin et al. 

[44] explored construction of a sensing device for 

measuring water turbidity employing an LED, a 

photodetectors a polymer optical fiber as major 

materials, and, promising sensitivity values.  

Wang et al. also experimented with cost-effective device 

for measuring turbidity and a web-based water quality 

assessment project that incorporated an 850 nm 

infrared LED, a customized IoT platform for 

communication, and dual orthogonal photodetectors. 

The study found that the device could measure turbidity 

with good precision and reliability equal to existing 

sensors. In another experiment, Rahman et al. [45] used 

a device that worked with LED for water measurement 

of turbidity and also observed how it responded to 

different visible light colors used for the task and 

determined the best photo detector in terms of 

power fluctuation in the ON/OFF state. The writers 

demonstrated that the white light offers the greatest 

efficiency with lower than 8% experimental errors in 

most measures, after which follows a UV LED, however, 

both beams were appropriate for measuring the 

turbidity of water fluctuating between 0 to 1000 NTU. In 

another study, Schima et al. [46] designed a 

photosensitive method for real-time evaluation of 

turbidity that used sensors in the ultraviolet band of the 

electromagnetic field and showed significant precision 

when compared to laboratory criteria. Furthermore, the 

Python script running on a Raspberry Pi controller was 

liable for communicating with a detector, demonstrating 

that open-source technology can be vital to robust and 

reliable systems even in the laboratory phase. 

3.4 Total Dissolved Solids (TDS) 

 
"Dissolved solids" refers to minerals, saline compounds, 

or metals that are in a dissolved state within water. Total 

Dissolved Solids (TDS) encompass organic compounds, 

predominantly consisting of calcium, potassium, 

magnesium, bicarbonate, sodium, chlorides, and 

sulphates, along with trace amounts of organic 

compounds dispersed in the water. 

The TDS sensor module is plug-and-play, user-friendly, 

and compatible with IoT devices. Figure 5 shows this 

sensor. We can easily construct a TDS detector to 

determine the TDS value of water. 

The concentrations of TDS can increase as a result of 

wash-off from salted roads in the winter season. 

Increasing amounts of nitrate or phosphate ions may be 

produced by wastewater treatment projects that use 

organic content. When TDS intensity increases, 

especially when dissolved salts are involved, many 

species of aquatic life suffer. The dissolved 

compounds dehydrate animal hides. TDS concentrations 

in rivers and streams are frequently found to 

range between 50 and 250 mg/L. In areas with mostly 

hard water or incredibly high salinity, its amounts can 

extend up to 500 mg/L. It is a water quality metric 

derived from the total suspended particle loss on 

ignition. It is vital in the treatment of water and 

wastewater. 

As per Sibal and Espino [49], most commonly used lab-

based methods for analyzing TDS in water are atomic 
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emission spectrometry (AES), atomic absorption 

spectrometry (AAS), inductively coupled plasma MS (ICP-

MS), mass spectrometry (MS), X-ray fluorescence (XRF), 

and optical technologies. According to Garciá-Miranda 

Ferrari et al.[47], these procedures are complex and 

costly and may involve the usage of preconcentration 

and extraction procedures for high-analysis enactment. 

Methods using electrochemical sensors, on the other 

hand, may be more effective, due to their small size, low 

cost, simple installation, and simple to use. Phyllis et al. 

[51]presents a review of the effects that total dissolved 

solids have on marine life and which species are more 

sensitive and affected by the TDS intensity are different 

life stages. 

 

3.5 Salinity 

Salinity is the measurement of the dissolved salt content 

in water, typically expressed in units such as parts per 

thousand (ppt) or percentage (%). For freshwater 

sourced from rivers, the salinity level is generally 0.5 ppt 

or lower. 
The salinity of the oceans differs, but the relative 

quantities of the most essential dissolved elements 

remain almost steady, regardless of the existence of 

lower percentages of other salt compounds in seawater, 

sodium (Na+) and chloride (Cl-) ions makeup 

approximately 91% of all seawater ions. Freshwater has 

far fewer salt ions. Electrical conductivity (EC) testing is 

frequently used to calculate salinity. EC is calculated by 

flowing an electric current through a water sample 

between two metallic plates or electrodes and observing 

how quickly current flows between the plates. 

Two types of sensors are used as salinity sensors: 

Interferometers and fiber gratings. Cong et al. [47] and 

Liu et al. [48] modeled the salinity sensor with a fiber 

grating, with a salinity sensitivity of 10.4 pm/%. 

Gentleman and Booksh [49] used surface plasmon 

resonance to determine the salinity of a liquid 

deploying a multimode optical fiber. Sensitivity of the 

optical fiber increased to 200 pm/% compared to the 

standard prism refractive index approach. Hussain et al. 

[47] proposed two techniques for measuring salinity of 

water using smartphones, the possibility was proven, 

and the mobility of the salinity sensor was enhanced. 

In the research [52], a sample of saline wastewater from 

different sources was collected that contained different 

kinds of salt contents, pollutants, organic and inorganic 

compounds, and many others. Keeping in view the 

damage these cause to the environmental system and 

their contribution to land degradation, various methods 

of treatment of saline water were proposed in this 

paper. The most commonly used techniques to 

desalinate the wastewater into the freshwater discussed 

in this research are reverse osmosis, membrane 

distillation, freezing process, electro dialysis, and 

desalination process. 

 

3.6 Color 

 

Prior to technological advancements and the 

introduction of remote monitoring tools, color of water, 

defined by reflection of light in minute particles from 

organic or mineral sources, served as a longstanding 

indicator for water quality analysis. However, with the 

progression of technology in society, increased research 

attention has been directed toward understanding and 

characterizing water color. Edwards constructed sensor 

to assess color and turbidity of water sources 

through four-beam frequency benefit method for 

precise assessment. At the time, this prototype, which 

was utilized in water treatment unit, was considered to 

be very innovative research. 

Studies like Murphy et al. [54] planned cost-effective 

optical sensor that helps in evaluating the water quality 

based on a multi-wavelength source of light and has two 

photodiode sensors that can measure light transmission 

and sideways scattering at the top of the detector to 

determine the metrics of color and turbidity. 

Procedure was carried out in a research center, but 

research team wishes to employ sensor in long run as 

the real-time major water contamination evaluation 

technique. 

 

 

Figure 1. Number of studies reported each year on the topic 

[53]  

Considering the significance of gaining knowledge of the 

connection between color and other metrics used in 

water quality assessment, Yang [55] devised a 

multisensory approach for assessing water quality 

factors (pH value, temperature, ammonia, nitrogen, and 

color) for fish farming using algorithmically improved 

sensing devices, with the evaluation of color constraint 

in water sent in real-time through Zigbee Network 

communication standards. In addition, Saravanan et al. 

[56] discussed an IoT-based monitoring system for the 

quality of water that involves color as one of the factors 

to be monitored in real-time. 

 

3.7 Nitrogen 
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Nitrogen is prevalent in various environmental sources, 

including decomposed plants, wildlife, human 

excrement, manure, and pesticides. Monitoring nitrogen 

levels can be accomplished through diverse techniques 

like chromatography, electrochemistry, and 

spectroscopy techniques. 

Chromatography is utmost effective approach when 

there is organic material in testers as it does not 

undergo involvement from other composites; however, 

it is considered an expensive and complicated strategy 

of use because it requires unique methods and specific 

components in the procedure [43]. Spectroscopy can 

also encounter intervention, but it is more convenient to 

utilize than the other two techniques and generates 

results faster. Electrochemistry monitoring has a 

significant potential for inexpensive applications, but it 

can be affected by organic and ion compounds in trials. 

An evolution of inexpensive sensors for the real-

time identification of nitrogen has attracted 

consideration in the paper because it is a key factor 

from an evaluating point of view. For example, Akhter et 

al. [57] designed a sensor system in which the substrate 

used is poly dimethyl siloxane, and the conductive 

medium is tough outer carbon nanotubes. Grapheme 

has good electrical characteristics, but large-scale 

manufacture is complicated, which may adversely 

impact the predictive ability of the designed sensor. 

 

4. Issues and challenges in WSN IoT AI ML and DL in 

smart agriculture 

An addition of WSNs, IoT, AI, ML, and DL in SA introduce 

a myriad of opportunities, but it is not without its share 

of challenges. This section explores the key issues and 

hurdles faced in deploying these advanced technologies 

in the agricultural landscape. 

1. Scalability and Network Coverage: One of the primary 

challenges in WSNs and IoT deployment is ensuring 

scalability and adequate network coverage. Large 

agricultural areas may pose difficulties in maintaining a 

reliable and expansive network, leading to gaps in data 

collection and communication. 

2. Data Privacy and Security: The vast amount of data 

generated by WSNs, IoT devices, and AI systems in SA 

raises significant concerns about data privacy and 

security. Protecting sensitive information related to crop 

yields, soil conditions, and farm practices is crucial to 

prevent unauthorized access and potential misuse. 

3. Energy Efficiency: Many WSNs and IoT devices in 

agriculture operate in remote or challenging 

environments. Ensuring energy efficiency for these 

devices, especially those reliant on batteries or 

renewable sources, is crucial for maintaining 

uninterrupted data collection and communication. 

4. Integration Complexity: Integrating diverse 

technologies like WSNs, IoT, AI, ML, and DL can be 

complex. Achieving seamless interoperability and 

effective communication between these components 

poses a substantial challenge, requiring standardized 

protocols and robust integration frameworks. 

5. Lack of Standardization: The absence of standardized 

protocols across different devices and platforms 

hampers the seamless integration of technologies in SA. 

Standardization is essential for ensuring compatibility, 

data consistency, and the interoperability of various 

solutions. 

6. Skill Gaps and Education: The effective deployment of 

advanced technologies in agriculture requires a skilled 

workforce. There is a notable gap in agricultural 

education and training programs that cover WSNs, IoT, 

AI, ML, and DL. Bridging this gap is essential for farmers 

and agricultural professionals to harness the full 

potential of these technologies. 

7. Cost Considerations: The initial investment and 

ongoing costs associated with deploying and 

maintaining WSNs, IoT devices, and AI systems can be a 

significant barrier, especially for smaller or resource-

constrained farms. Achieving cost-effectiveness without 

compromising functionality is a persistent challenge. 

8. Environmental Impact: While SA aims to 

enhance sustainability, the environmental 

impact of deploying technology-intensive 

solutions should be carefully considered. Issues 

such as electronic waste, energy consumption, 

and the ecological footprint of technology 

implementations need attention.  

9. Ethical Considerations: The use of AI and ML in 

decision-making processes for agriculture raises ethical 

concerns. Issues related to transparency, accountability, 

and biases in algorithmic decision-making must be 

addressed to ensure fair and responsible use of technology 

in farming practices. 

10. Connectivity in Remote Areas: In agricultural regions 

with limited connectivity, ensuring reliable network 

access for WSNs and IoT devices becomes challenging. 

This is particularly relevant in remote rural areas where 

agriculture is a primary economic activity. 

In conclusion, addressing these challenges is crucial for 

the successful and sustainable implementation of WSNs, 

IoT, AI, ML, and DL in SA. Collaborative efforts from 

technology developers, policymakers, and the 

agricultural community are essential to overwhelmed 

these hurdles and expose occupied prospective of SA 

for a more efficient and sustainable future. 

 

5. Future Directions 

Cutting-edge digital technologies have made 

remarkable advancements, seamlessly 

integrating with Internet of Things and Wireless 

Sensor Networks (IoT-WSNs) to enhance the 

sustainability of applications in SA. This 

integration brings about substantial 

optimization across whole spectrum of 

agricultural procedures, spanning from 

cultivation to harvest and revolutionizing whole 
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agricultural sector. These forward-thinking 

enterprises mark a pivotal moment in reshaping 

an agricultural background. 

Tailoring of digitization to meet specific 

requirements demands considerable financial 

investment to align with individual necessities  

of farmers. To fortify consistency of this 

digitization, it is imperative to embrace 

government-backed initiatives, leverage grants, 

foster strategic public -private partnerships, and 

implement open data policies. Such initiatives 

should be complemented by research efforts 

tailored to regional nuances, strengthening 

their impact and effectiveness.  

Achieving precision in tailoring digitization to 

unique requirements demands substantial 

financial commitment that caters to the specific 

demands of individual farmers. Equally crucial 

is the establishment of transparent data 

policies, ensuring reinforcement by local 

research activities. An organized tactic involves 

particular implementation of well -structured 

roadmap for development of SA systems. This 

journey commences with inaugurating initial  

architecture that comprises vital constituents 

and streamlined functionalities, setting the 

stage for a comprehensive transformation in 

agricultural practices.  

 

I. DL in Smart agriculture 

DL, an advanced technique within  the realm of 

ML, employs multi -layered neural networks to 

mimic complex structure of human brain. DL 

algorithms play an indispensable role in context 

of Internet of Things and Wireless Sensor 

Networks (IoT-WSNs) specifically tailored for SA. 

These algorithms excel in cultured data 

analysis, particularly in areas such as image 

recognition and Natural Language Processing 

(NLP), contributing significantly to profound 

understanding of agricultural procedures. 

In this regard, computer vision becomes a 

crucial component, enabling machines to 

decode and understand visual data taken from 

pictures or movies. By carefully analyzing 

imagery data, its incorporation into IoT -WSNs 

for agricultural applications increases the 

potential for monitoring crop health, quickly 

identifying illnesses, and precisely estimating 

growth stages. This integration makes it easier 

to make educated, timely adjustments to 

agricultural methods, which eventually 

increases productivity and promotes efficiency . 

Modern AI technologies combined with wireless 

sensor networks (WSNs) have emerged in recent 

years as a promising new direction for the 

agriculture industry. This integration offers a 

once-in-a-lifetime chance to improve resource 

efficiency, optimize farming methods, and 

dramatically increase agricultural yield. The 

sections that fol low provide a thorough analysis 

of the several AI-based tools that can be used 

to advance sustainable agriculture . These 

discussions delve into the potential impact and 

contributions these technologies can make to 

reshape and advance the agricultural 

landscape.  

 

II. ML in Smart Agriculture 

As a component of AI, ML is specifically dedicated to 

fostering the development of computer systems that 

possess the ability to learn and adapt through 

experiences. When employed in the context of Internet 

of Things and Wireless Sensor Networks (IoT-WSNs) 

within agriculture, ML algorithms undertake a thorough 

analysis of historical and real-time data. Primary goal is 

to refine irrigation patterns, anticipate and proactively 

manage crop diseases, and automate diverse 

agricultural processes. This integration plays a pivotal 

role in substantially augmenting competence and total 

output within an agricultural domain. 

Artificial General Intelligence (AGI) stands at forefront, 

showcasing significant prospective to exert profound 

impact across diverse sectors, with agriculture 

prominently featured. AGI, particularly in domains such 

as Natural Language Processing (NLP) and Agri-Robotics, 

holds the capability to improve crop yields, minimize 

wastage, and advance sustainable farming practices. 

This distinctive capability uniquely positions AGI as likely 

solution to complex contests encountered by an 

agricultural division. 

 

III. Agri-ROBOTS 

 

Agri-robotics entails incorporating robotic 

systems and automation technologies into 

agricultural operations. When coupled with IoT -

WSNs, these robotic systems gain additional 

capabilities through the integration of sensor 

data, optimizing tasks like accurate planting, 

monitoring, and harvesting. This integration 

leads to improved efficiency and productivity in 

agriculture.  

The precision of these robots stems from their 

specialized sensing and actuation capabilities, 

potentially reducing the need for labor while 

enhancing various agricultural processes. 

Drones play a vital role in tasks such as 

pesticide spraying, irrigation, crop harvesting, 

seed sowing, and soil  cultivation, playing a 

pivotal role in transforming conventional 

farming practices.  

 

IV. 5G and 6G in smart agriculture 
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The evolution of 5G technologies and the 

anticipated revolution ushered in by 6G within 

the context of IoT-WSNs holds significant 

consequences for an agricultural region. 5G, 

marking 5 th  generation of wireless technology, 

signifies the substantial advancement; 

introducing key improvements likewise 

accelerated data speeds, reduced latency, and 

enhanced connectivity.  These enhancements 

translate into heightened real -time monitoring 

capabilities and faster transmission of sensor 

data, ultimately refining coordination among 

devices in agricultural solicitations. 

Looking towards the future, the developmental 

phase of 6G technology holds a potential to 

revolutionize data collection and analysis, 

potentially achieving speeds in terabits -per-

second choice. This ensures exceptionally 

timely and precise insights for farmers. The 

integration of 5G and an intended capability of 

6G within IoT-WSNs for agriculture present 

massive potential. This combination facil itates 

real-time monitoring of critical factors, 

including soil conditions, crop health, weather 

patterns, and equipment performance, 

empowering optimized decision-making.  

Current generation of intelligent agricultural 

applications, trusting on the relatively limited 

number of wireless sensors, demands improved 

accuracy and effectiveness. Conversely, an 

ongoing development of 6G communication 

technologies lays foundation for forthcoming of 

intelligent and sustainable agriculture. 6G 

technology initiates to allow an interconnection 

of general sensors, granting farmers capacity to 

gather intricate, plant-specific information. This 

transformative potential fueled by 6G 

technology is poised to revolutionize SA, 

ensuring precise data collection, advanced 

robotics, and precision agriculture in remote 

locations, thereby making agriculture 

considerably more efficient, ecological, and 

economical.  

 

V. Block chain Systems in Smart Agriculture 

 

The integration of blockchain technology in  SA 

represents a significant advancement with far -

reaching implications. Blockchain, originally 

devised as a decentralized and secure ledger 

for crypto currencies, has found applications in 

various industries, including agriculture. In the 

context of SA, blockchain serves as a 

transparent and tamper-resistant system for 

managing, recording, and verifying data across 

the agricultural supply chain.  

Blockchain in SA offers a decentralized and 

distributed ledger that records transactions and 

information at each stage of the agricultural 

process. This ledger, comprised of blocks linked 

in a secure chain, ensures data integrity and 

transparency. Each block contains a time 

stamped record of transactions, making it 

virtually impossible to alter historical data 

without consensus from whole network.  

One notable application of blockchain in SA is 

supply chain management. It allows for 

traceability of agricultural products from farm 

to consumer, providing a secure and 

unalterable record of each step in the 

production and distribution process. This 

transparency enhances food safety by quickly 

identifying and isolating the source of 

contamination or other issues.  

Smart contracts, self-executing contracts with 

terms of an agreement directly written into 

code, further enhance functionality of 

blockchain in agriculture. These contracts 

automate and enforce predefined rules, 

facilitating seamless and trustless transactions. 

For instance, smart contracts can be employed 

to automate payments between farmers and 

suppliers based on predefined conditions, 

streamlining financial transactions and 

reducing the risk of disputes.  

Moreover, blockchain technology enhances data 

security and privacy in SA. Farmers can securely 

store and share sensitive data, such as crop 

yields or soil quality, with authorized parties 

without compromising the integrity of the 

information. This decentralized approach 

mitigates the risks associated with centralized 

data storage systems, reducing the l ikelihood of 

data breaches or unauthorized access.  

In conclusion, the integration of blockchain 

technology in SA brings forth a paradigm shift 

by introducing transparency, security, and 

efficiency across the agricultural supply chain. 

This innovative approach not only enhances 

traceability and food safety but also 

streamlines transactions and ensures the 

integrity of sensitive agricultural data. As an 

agricultural industry continues to hold digital 

transformation, blockchain stands as a robust 

and promising solution to address key 

challenges and propel SA into a more secure 

and transparent future.  

 

6. Conclusion 

In conclusion, the comprehensive survey on the 

integration of WSNs, IoT, AI,  and DL in SA 

reveals a transformative landscape for the 

agricultural sector. The amalgamation of these 
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cutting-edge technologies offers a holistic and 

data-driven approach to farming practices, 

bringing about significant advancements in 

efficiency, productivity, and sustainabil ity.  

The synergy of WSNs and IoT provides real -time 

monitoring and data acquisition capabilities, 

enabling farmers to make informed decisions 

based on accurate and timely information. AI,  

with its ability to analyze vast datasets, 

optimizes various agricultural processes such 

as irrigation, soil management, and pest 

control, contributing to resource efficiency and 

yield improvement.  

The incorporation of DL, particularly in image 

recognition and data analysis, enhances the 

precision of monitoring and decision-making 

within SA. This holds promising implications for 

crop health assessment, disease detection, and 

overall crop management. The survey 

underscores the potential of these technologies 

to revolutionize traditional farming methods, 

paving the way for more intell igent, data -

driven, and sustainable agricultural practices.  

However, amidst the promises, challenges such 

as scalability, data security, and standardization 

need attention for the seamless integration of 

these technologies. Collaborative efforts from 

researchers, policymakers, and industry 

stakeholders are essential to address these 

challenges and unlock full potential of SA. 

In essence, the survey illuminates the 

transformative power of integrating WSNs, IoT, 

AI, and DL in agriculture. The synergy of these 

technologies has the potential to usher in a new 

era of precision farming, where data -driven 

insights contribute to more efficient resource 

utilization, reduced environmental impact, and 

increased resilience in the face of evolving 

agricultural challenges. As SA continues to 

evolve, the integration of these technologies 

remains a cornerstone in shaping the future of 

sustainable and intelligent farming practices.  

 

Author Contributions: “Conceptualization, M.A.R. and S.M.A.; 

methodology, S.K; and N.S writing—original draft preparation, 

M.A.R.; writing—review and editing, G.M.J.; visualization, M.A.R.; 

supervision, S.K.; All authors have read and agreed to the 

published version of the manuscript.” 

Funding: “This study does not receive external funding.”. 

Ethical Clearance: “Not applicable”. 

Informed Consent Statement: “Not applicable.” 

Data Availability Statement: “Not applicable.” 

Acknowledgments: Thanks Co-authors for support and help. 

Conflicts of Interest: “All the authors declare that there are no 

conflicts of interest.” 

References 

1. Rahu, M. A., Chandio, A. F., Aurangzeb, K., Karim, S., Alhussein, 

M., & Anwar, M. S. (2023). Towards design of Internet of Things 

and machine learning-enabled frameworks for analysis and 

prediction of water quality. IEEE Access. 

2. Shaikh, F. K., Karim, S., Zeadally, S., & Nebhen, J. (2022). Recent 

trends in internet of things enabled sensor technologies for 

smart agriculture. IEEE Internet of Things Journal. 

3. Mirani, A. A., Memon, M. S., Rahu, M. A., Bhatti, M. N., & Shaikh, 

U. R. (2019). A review of agro-industry in IoT: applications and 

challenges. Quaid-E-Awam University Research Journal of 

Engineering, Science & Technology, Nawabshah, 17(01), 28-33.. 

4. Das, B., Ali, S. M., Shaikh, M. Z., Chandio, A. F., Rahu, M. A., 

Pabani, J. K., & Khalil, M. U. R. (2023, January). Linear 

Regression Based Crop Suggestive System for Local Pakistani 

Farmers. In 2023 Global Conference on Wireless and Optical 

Technologies (GCWOT) (pp. 1-6). IEEE. 

5. Mowla, M. N., Mowla, N., Shah, A. S., Rabie, K., & Shongwe, T. 

(2023). Internet of Things and Wireless Sensor Networks for 

Smart Agriculture Applications-A Survey. IEEE Access. 

6. Lashari, M. H., Karim, S., Alhussein, M., Hoshu, A. A., 

Aurangzeb, K., & Anwar, M. S. (2023). Internet of Things-based 

sustainable environment management for large indoor 

facilities. PeerJ Computer Science, 9, e1623. 

7. Rahu, M. A., Karim, S., Shams, R., Soomro, A. A., & Chandio, A. 

F. (2022). Wireless Sensor Networks-based Smart Agriculture: 

Sensing Technologies, Application and Future 

Directions. Sukkur IBA Journal of Emerging Technologies, 5(2), 18-

32. 

8. Mirani, A. A., Memon, M. S., Bhati, M. N., Soomro, M. A., & 

Rahu, M. A. (2017, December). Taxonomy of ubiquitous 

computing: Applications and challenges. In 2017 International 

Conference On Information And Communication Technologies 

(Icict) (pp. 202-208). IEEE. 
9. Rahu, M. A., Kumar, P., Karim, S., & Mirani, A. A. (2018). 

Agricultural Environmental Monitoring: A WSN 

Perspective. University of Sindh Journal of Information and 

Communication Technology, 2(1), 17-24. 

10. Mirani, A. A., Memon, E. M. S., Chohan, R., Sodhar, I. N., & Rahu, 

M. A. (2021). Irrigation scheduling, water pollution monitoring 

in IoT: A Review. 

11. Rahu, M. A. (2018). Energy Harvesting for Water Quality 

Monitoring using Floating Sensor Networks: A Generic 

Framework. Sukkur IBA Journal of Emerging Technologies, 1(2), 

19-32. 

12. N. Gondchawa and P. D. R. S. Kawitka, "IoT based Smart 

Agriculture," International Journal of Advanced Research in 

Computer and Communication Engineering, vol. 5, no. 6, pp. 1-

5, 2016 

13. Shafi, U., Mumtaz, R., Anwar, H., Qamar, A. M., & Khurshid, H. 

(2018, October). Surface water pollution detection using 

internet of things. In 2018 15th international conference on 

smart cities: improving quality of life using ICT & IoT (HONET-

ICT) (pp. 92-96). IEEE. 

14. Krishnan, S. R., Nallakaruppan, M. K., Chengoden, R., Koppu, S., 

Iyapparaja, M., Sadhasivam, J., & Sethuraman, S. (2022). Smart 

water resource management using Artificial Intelligence—A 

review. Sustainability, 14(20), 13384. 

15. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An 

IoT based smart water quality monitoring system using cloud. 

In 2020 International conference on emerging trends in 

information technology and engineering (ic-ETITE) (pp. 1-7). IEEE. 

16. Anuradha, T., Bhakti, C. R., & Pooja, D. (2018). IoT based low 
cost system for monitoring of water quality in real time. Int. Res. J. 
Eng. Technol.(IRJET), 5(5). 

17. Demetillo, A. T., Japitana, M. V., & Taboada, E. B. (2019). A 
system for monitoring water quality in a large aquatic area using 
wireless sensor network technology. Sustainable Environment 
Research, 29, 1-9. 



Journal of Innovative Intelligent Computing and Emerging Technologies (JIICET), Vol 1, No 1, 2024 

 

 Page | 19  
 

18. Adamo, F., Attivissimo, F., Carducci, C. G. C., & Lanzolla, A. M. L. 
(2014). A smart sensor network for sea water quality 
monitoring. IEEE Sensors Journal, 15(5), 2514-2522. 

19. Agarwal, A., Shukla, V., Singh, R., Gehlot, A., & Garg, V. (2018). 
Design and development of air and water pollution quality 
monitoring using IoT and quadcopter. In Intelligent 

Communication, Control and Devices: Proceedings of ICICCD 
2017 (pp. 485-492). Springer Singapore. 

20. Rose, K., Eldridge, S., & Chapin, L. (2015). The internet of things: 
An overview. The internet society (ISOC), 80, 1-50. 

21. Wai, K. P., Chia, M. Y., Koo, C. H., Huang, Y. F., & Chong, W. C. 
(2022). Applications of deep learning in water quality 
management: A state-of-the-art review. Journal of Hydrology, 
128332. 

22. P. M, M. J. P. R., and P. V., "The Real-Time Monitoring of Water 

Quality in IoT Environment," International Journal of Innovative 

Research in Science, Engineering, and Technology, vol. 5, no. 3, 

pp. 1-6, 2016. 

23. Roy, A., Mukhopadhyay, S., & Roy, S. (2022, September). IoT 
Based Water Quality Monitoring System. In 2022 Second 
International Conference on Computer Science, Engineering and 
Applications (ICCSEA) (pp. 1-4). IEEE. 

24. Geetha, S., & Gouthami, S. J. S. W. (2016). Internet of things 
enabled real time water quality monitoring system. Smart 
Water, 2(1), 1-19. 

25. Sun, H., & He, Y. (2017, December). Research and Application of 
Water Quality Evaluation of a Certain Section of Yangtze River 
Based on Fuzzy Neural Network. In 2017 International 
Conference on Industrial Informatics-Computing Technology, 
Intelligent Technology, Industrial Information Integration 
(ICIICII) (pp. 301-304). IEEE. 

26. Tace, Y., Tabaa, M., Elfilali, S., Leghris, C., Bensag, H., & 
Renault, E. (2022). Smart irrigation system based on IoT and 
machine learning. Energy Reports, 8, 1025-1036. 

27. Wang, J., Raza, A., Hu, Y., Buttar, N. A., Shoaib, M., Saber, K., ... 
& Ray, R. L. (2022). Development of monthly reference 
evapotranspiration machine learning models and mapping of 
Pakistan—A comparative study. Water, 14(10), 1666. 

28. Rokade, A., Singh, M., Arora, S. K., & Nizeyimana, E. (2022). IOT-
Based Medical Informatics Farming System with Predictive Data 
Analytics Using Supervised Machine Learning 
Algorithms. Computational and Mathematical Methods in 
Medicine, 2022. 

29. Nikoo, M. R., & Mahjouri, N. (2013). Water quality zoning using 
probabilistic support vector machines and self-organizing 
maps. Water resources management, 27, 2577-2594. 

30. Heddam, S. (2017). Generalized regression neural network based 
approach as a new tool for predicting Total Dissolved Gas (TDG) 
downstream of spillways of dams: a case study of Columbia river 
basin dams, USA. Environmental Processes, 4(1), 235-253. 

31. Childs, P. R., Greenwood, J. R., & Long, C. A. (2000). Review of 
temperature measurement. Review of scientific 

instruments, 71(8), 2959-2978. 

32. Wu, Z., Wang, J., Bian, C., Tong, J., & Xia, S. (2020). A MEMS-
based multi-parameter integrated chip and its portable system for 
water quality detection. Micromachines, 11(1), 63. 

33. Alam, A. U., Clyne, D., & Deen, M. J. (2021). A low-cost multi-
parameter water quality monitoring system. Sensors, 21(11), 
3775. 

34. Simić, M., Stojanović, G. M., Manjakkal, L., & Zaraska, K. (2016, 
November). Multi-sensor system for remote environmental (air 
and water) quality monitoring. In 2016 24th telecommunications 
forum (TELFOR) (pp. 1-4). IEEE. 

35. Lynch, J. P., Huang, H., Sohn, H., & Wang, K. W. (2019). Sensors 
and Smart Structures Technologies for Civil, Mechanical, and 
Aerospace Systems 2019. In Proc. of SPIE Vol (Vol. 10970, pp. 
1097001-1). 

36. S. Dutta, D. Sarma and P. Nath, "Ground and river water quality 

monitoring using a smartphone-based pH sensor," AIP 

Advances, vol. 5, no. 5, 2015. 

37. A. U. Alam, D. Clyne and M. Deen, "A Low-Cost Multi-Parameter 

Water Quality Monitoring System," Sensors, pp. 1-4, 2021. 

38. M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, and A. 

Jamalipour, "Early warning smartphone diagnostics for water 

security and analysis using real-time pH mapping," Photonic 

Sensors, pp. 289-297, 2015. 

39. V. D. Silva, R. C. d. Freitas and B. Janegitz, "Microfluidic paper-

based device integrated with a smartphone for point-of-use 

colorimetric monitoring of water quality index," Measurement, 

p. 164, 2020. 

40. A. A. Azman, M. Rahman, and M. Ali, "A low-cost nephelometric 

turbidity sensor for continual domestic water quality 

monitoring system," IEEE International Conference on 

Automatic Control and Intelligent Systems, pp. 202-207, 2016. 

41. A. Arifin, I. Irwan and B. Abdullah, "Design of sensor water 

turbidity based on polymer optical fiber," 2017 International 

Seminar on Sensors, Instrumentation, Measurement, and 

Metrology (ISSIMM), 2017. 

42. M. F. A. Rahman, A. H. A. Samah and S. Z. Yahaya, "Performance 

evaluation of LED Based sensor for water turbidity measurement," 12th 

International Conference on Sensing Technology (ICST), pp. 20-24, 

2018. 

43. R. Wagner, S. Krüger and J. Bumberger, "Mobile Monitoring-

Open-Source Based Optical Sensor System for Service-

Oriented Turbidity and Dissolved Organic Matter Monitoring," 

Frontiers in Earth Science, p. 184, 2019. 

44. A. G.-M. Ferrar, P. Carrington, and S. J. Rowley-Neale, "Recent 

advances in portable heavy metal electrochemical sensing 

platforms," Environmental Science: Water Research and 

Technology, no. 10, 2020. 

45. P. K. Weber-Scannell and L. Duffy, "Effects of Total Dissolved Solids 

on Aquatic Organisms: A Review of Literature and Recommendation for 

Salmonid Species," American Journal of Environmental Sciences, 2007. 

46. Y. Ahsan, A. W. Qurashi and R. Yasmeen, "Desalination of Saline 

Water: A Review," The Journal of Zoology, vol. 3, no. 1, pp. 1-5, 2022. 

47. G. M. e. Silva, D. F. Campos and J. A. T. Brasil, "Advances in 

Technological Research for Online and Situ Water Quality Monitoring—

A Review," Department of Hydraulics Engineering and Sanitation, pp. 1-

28, 2022. 

48. K. Murphy, B. Heery, and D. Zhang, "A low-cost autonomous optical 

sensor for water quality monitoring," ResearchGate, pp. 520-527, 2014. 

49. D. S. Simbeye and S. F. Yang, "Water Quality Monitoring and Control 

for Aquaculture Based on Wireless Sensor Networks," Journal of 

Networks, pp. 840-849, 2014. 

50. K. Saravanan, E. Anusuya and R. Kumar, "Real-time water quality 

monitoring using Internet of Things in SCADA," Environment 

Monitoring Assessment, p. 190, 2018. 
51. H. R. S. Fowzia Akhter*, M. E. E. Alahi and S. C. Mukhopadhyay, "An 

IoT-enabled portable sensing system with MWCNTs/PDMS sensor for 

nitrate detection in water," Measurement: Journal of the International 

Measurement Confederation, pp. 1-10, 2021. 

52. Adnan, M., Wang, Q., Sohu, N., Du, S., He, H., Peng, Z., Liu, Z., Zhang, 

X. and Bai, C., 2023. DFT Investigation of the Structural, Electronic, and 

Optical Properties of AsTi (B i)-Phase ZnO under Pressure for 

Optoelectronic Applications. Materials, 16(21), p.6981. 

53. Amur, Z.H., Hooi, Y.K., Soomro, G.M., Bhanbhro, H., Karyem, S. and 

Sohu, N., 2023. Unlocking the Potential of Keyword Extraction: The 

Need for Access to High-Quality Datasets. Applied Sciences, 13(12), 

p.7228. 

54. Sohu, N., Zardari, N.A., Rahu, M.A., Mirani, A.A. and Phulpoto, N.H., 

2019. Spectrum Sensing in ISM Band Using Cognitive Radio. Quaid-E-

Awam University Research Journal of Engineering, Science & 

Technology, Nawabshah. 17(01), pp.21-27. 

 


